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Absolute Equilibrium Entropy
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The entropy associated with absolute equilibriumensemble theories of ideal, homogeneous, 
uid and magneto-


uid turbulence is discussed and the three-dimensional 
uid case is examined in detail. A �-function is de-

�ned, whose minimumvalue with respect to global parameters is the entropy. A comparison is made between

the use of global functions � and phase functions H (associated with the development of various H-theorems

of ideal turbulence). It is shown that the two approaches are complimentary though conceptually di�erent:

H-theorems show that an isolated system tends to equilibrium while �-functions allow the demonstration

that entropy never decreases when two previously isolated systems are combined. This provides a more

complete picture of entropy in the statistical mechanics of ideal 
uids.

1Senior Research Scientist, Aerodynamic & Acoustic Methods Branch, Mail Stop 128.

1



1 Introduction

The concept of entropy has long been an important and yet a perplexing one. It is important because it

never decreases when two previously isolated systems are brought together and hence provides an explicit

measure of irreversibility. It is perplexing because although it has long been recognized that \in particular,

we cannot speak of its instantaneous value" (Landau & Lifshitz 1980), this is often done (e.g., Lifshitz &

Pitaevskii 1981). In fact, so-called H-theorems explicitly require the existence of a time-dependent function

which is assigned the role of a `dynamic entropy' for an isolated system.

A time-dependent entropy, however, appears to be an oxymoron: entropy measures a certain property of

an isolated or quasi-isolated system; the entropy is a constant and does not depend on what speci�c microstate

the system happen to be in at any particular instant. The classical de�nition of entropy is S = kB lnW ,

where kB is Boltzmann's constant and W is the number of states available to the system in question. If the

system is `isolated',W is a �xed number; it is immaterial in which of the available states the system resides:

the entropy S has a �xed, time-independent value. Of course, the isolated system may interact with other

systems and when two or more systems combine into a new system, there is a corresponding, �xed value of

entropy for this new system.

Thus, there are two seemingly di�erent views: �rst, that the entropy of a system is a quantity which is

�xed when that system is isolated, and second, that the system, when isolated, has an entropy which evolves

from some intial value towards a di�erent `equilibrium' value. The resolution of this dilemma is to realize

that what is evolving is not the entropy itself, but the distribution function f of the system. Concurrently,

an estimate of the entropy called an H-function [H(f) = �
R
f ln fd� where d� is an element of the system's

phase space] evolves as f does (the evolution of f being determined by a Boltzmann equation). As f ! �f ,

where �f is the equilibrium (or most probable or average) distribution, then H(f) ! H( �f ) = S, where S is

the entropy of the system. Showing that dH(f)=dt � 0 is an important statistical result since it indicates

that a system, once isolated, tends to evolve to an equilibrium distribution. Notice that the entropy S does

not evolve; rather H(f) < S if f 6= �f and H(f)! S as f ! �f . In fact, the H-function will 
uctuate below

S as f 
uctuates about �f .

The H-function is a phase function, that is, a function whose estimate is evolving as the system point

moves along a phase trajectory, and entropy is the extremum value of H. As Khinchin (1949) emphasizes,
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entropy can also be expressed as the extremum value of a thermodynamic function, i.e., a function of global

thermodynamic parameters; here, we will call this function �. However, whereas H is a function of the

evolving distribution f (a function of time), � is a function of the a priori probability density D (a function

of global quantities such as the temperature T ). The di�erence between the two functions is that while

entropy is the maximum value of H(f) with respect to time, it is the minimum value of �(D) with respect to

global thermodynamic parameters. This is a very important property of � as it allows the demonstration that

entropy never decreases when two isolated systems are combined into one. [Note that this is conceptually

di�erent from dH(f)=dt � 0, which only shows that an isolated system evolves towards equilibrium.]

2 Statistics of Ideal Fluids

In this paper, we will be concerned with entropy as related to �nite (Fourier) representations of incompress-

ible, homogeneous, ideal (i.e., non-dissipative) 
uids and magneto-
uids (so that whenever the words 
uid

and magneto-
uid are used, incompressibility, homogeneity, and ideality, if not explicitly stated, are always

implicit). To illustrate the general concepts, the particular case of an ideal three-dimensional (3-D) 
uid

will be considered in detail. The goal is to more completely understand how turbulence can be described in

terms of statistical mechanics; integral to this understanding is a description of entropy and the role it plays.

It is well known that the classical thermodynamic entropy of each 
uid element in an isolated, ideal 
uid

is conserved (Landau & Lifshitz 1987); here, we are interested in developing the properties of the absolute

equilibrium entropy. The classical entropy, in terms of the probabilities pn that a physical system is in

a microstate n, is de�ned as S = �
P

n
pn lnpn (dimensionless units will be used here, so that kB = 1).

Similarly, in an absolute equilibrium ensemble, the entropy is determined by �nding the extremum of the

function � = �
R
D lnDd�, where D is the a priori probability density in the phase space � whose axes

correspond to the independent real and imaginary components of the Fourier velocity coe�cients (Shebalin

1989). The probability density D depends on the integral invariants of the motion: for 2-D 
uids, these are

the energy and enstrophy (Kraichnan 1975, where absolute equilibrium is also discussed); for 2-D magneto-


uids, the energy, cross helicity (Woltjer 1958), and mean-squared magnetic potential (Fyfe & Montgomery

1976, where absolute equilibrium is also discussed); for 3-D 
uids, the energy and kinetic helicity (Betchov

1961, Mo�att 1969); and for 3-D magneto-
uids, the energy, cross helicity (Woltjer 1958), and magnetic
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helicity (Els�asser 1956). Additionally, if the mean magnetic �eld is non-zero, then the mean-squared magnetic

potential is not conserved in 2-D ideal magneto-
uids (Shebalin, Matthaeus & Montgomery 1983), while in

3-D ideal magneto-
uids, the magnetic helicity is no longer an invariant (Shebalin 1994). For 3-D 
uids,

a detailed discussion of absolute equilibrium was given �rst by given by Kraichnan (1973), and for 3-D

magneto-
uids, a detailed discussion was given �rst by Frisch, Pouquet, Leorat & Mazure (1975).

In order to demonstrate that equilibrium (i.e., a most probable state) is attained by an isolated turbulent


uid, several paths have been taken to develop an H-theorem. Montgomery used a BBGKY format to arrive

at an H-theorem which shows that a function (here denoted as) H = �
R
f ln f d� never decreases with time

(Montgomery 1976); again, f is the time-dependent distribution function in phase space. An H-function

for 
uid mechanics was also developed by Carnevale, Frisch & Salmon (1981) and Carnevale (1982). They

identify HG = 1
2

P
k
ln ju(k)j2 as an `entropy functional' [where the G is for Gibbs and the u(k) are the

coe�cients associated with a truncated Fourier expansion of the turbulent velocity �eld]. Again, it is better

to call HG an H-function rather than entropy function(al) for the reasons given above. A comparison of HG

and the �-function to be developed will be made and discussed presently.

3 Absolute Equilibrium

The equation which describes ideal, incompressible 3-D 
uid dynamics is the Euler equation; in `vorticity

form' it is:

@!

@ t
= r� (u�!) : (1)

Here, the 
uid velocity is u and the vorticity is ! = r� u. If the physical variables u and ! are expanded

in a �nite Fourier series, we have, for example:

u(x) =
X
k

u(k) eik�x: (2)

Time dependence of both u(x) and u(k) is implicit; also, !(k) = ik � u(k) and u(k) = ik�2
k � !(k).

Furthermore, since the velocity �eld is real, its coe�cients must satisfy u(k) = u
�(�k), where `*' denotes

complex conjugation.

Conservation of integral invariants will occur even if the sum in (2) is taken over an arbitrary collection

of wave numbers k (Kraichnan & Montgomery 1980). The �nite set of k can be chosen so that all k such
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that 0 < jkj � kmax < N=2 are included, where N is the order of the Fourier transform in each dimension.

This is an isotropic truncation, but it is only one possibility out of many. In particular, two disjoint sets can

be created: k 2 K and k
0 2 K0, such that K 6= ; and K 0 6= ; but K \K 0 = ;; it will, however, be assumed

that if k 2 K then �k 2 K, and similarly for K 0. Furthermore, let M be the total number of wave vectors

in K; since u(�k) = u
�(k), the number of independent wave vectors is Z = 1

2M .

It was pointed out by T. D. Lee (1952) that the structure of (1), with a periodic solution of the form

of (2), admits a statistical solution because a `Liouville theorem' is satis�ed. Again, the components of the

independent real and imaginary parts of the coe�cients u(k) are used to label the axes of a multidimensional

phase space; the corresponding dynamical system is described by a single point in this phase space, a point

which moves about as the system evolves in time. The probability that the system point is in any part of

phase space can be described by a canonical probability density D which depends only on a small set of

conserved quantities, the integral invariants of the dynamical system. Once D has been found, then the

equilibrium energy spectrum can be determined, even though the u(k) are random variables.

In the case of isotropic, incompressible 3-D Euler turbulence, the integral invariants are the energy E

and the kinetic helicity Hk (Betchov 1961):

E =
1

2

X
k2K

ju(k)j2 and Hk =
1

2

X
k2K

u(k) �!�(k); (3)

while the absolute equilibrium probability density (Kraichnan 1973) is

D = C exp (��E � �Hk) where C =
Y
k2KZ

�
�2 � �2k2

�2k4

� 3

2

: (4)

The product above is taken over the set KZ : k 2 KZ implies k 2 K, but �k 62 KZ ; thus, KZ has half the

elements of K. (To create KZ , start with KZ empty and then choose each k 2 K in turn and place it into

KZ , if �k is not already there.)

The model system, in which ideal turbulence is simulated numerically by integrating a �nite Fourier

representation of equation (1) forward in time, is canonical as it can be considered a small system (a

computer code) weakly interacting with a larger `heat bath' (a digital computer). The `weak interaction' is

due to numerical round-o� and time-discretization errors, which cause very small 
uctuations of E and Hk;

it is within this context that these are called `integral invariants' of a `quasi-closed' system.
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Using the probability density D in (4), the expectation value of any quantity Q can be de�ned as

hQi �

Z
QD d�; where d� =

Y
k2KZ

duR(k) duI(k); (5)

where the integration limits on each dimension are �1 to 1, and where the subscripts R and I denote real

and imaginary parts, respectively, of the complex coe�cients. Using (5), expectation values of the moments

of the Fourier coe�cients can be easily found (since D is essentially gaussian):

huR(k)i = huI(k)i = 0;


juR(k)j

2
�
=


juI(k)j

2
�
=

3�

2 (�2 � �2k2)
;

and huR(k) �!R(k)i = huI(k) �!I(k)i =
�3�k2

2 (�2 � �2k2)
; (6)

where all the components of u(k) for a given k have equal expectation values. Substituting (6) into (3) gives

the expectation values

hEi =
3

2

X
k2K

�

�2 � �2k2
and hHki = �

3

2

X
k2K

�k2

�2 � �2k2
: (7)

Since the energy and kinetic helicity are canonical invariants, they are conserved to within very small


uctuations, and their values over time are essentially the same as either their initial or time-averaged

values. Thus, the relations (7) implicitly determine the `inverse temperatures' � and � in terms of hEi and

hHki.

Other global quantities, such as the enstrophy 
, will generally have large 
uctuations; nevertheless, the

enstrophy also has an expectation value:


 =
1

2

X
k2K

k2ju(k)j2 ) h
i =
3

2

X
k2K

�k2

�2 � �2k2
: (8)

Using (7) and (8), the following algebraic relations are arrived at:

� hEi+ � hHki =
3

2

X
k2K

1 = 3Z; � hHki + � h
i = 0: (9)

Thus, both � and � can be considered functions of one quantity, h
i:

� =
3Z h
i

hEi h
i � hHki
2 and � =

�3Z hHki

hEi h
i � hHki
2 : (10)

Using (3) and (8), it is straightforward but tedious to show that hEi h
i�hHki
2 � 0; thus, from (10), � > 0

and the product � hHki � 0. Furthermore, under coordinate inversion, hHki ! � hHki, while neither hEi nor
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h
i change sign; thus, though � is a scalar, � is a pseudoscalar under a parity transformation (i.e., coordinate

inversion). Note that (1) is invariant under a parity transformation; the fact that � is a pseudoscalar ensures

that the probability distribution (4) is also invariant. Also, for ideal magneto-
uids, the ratio R of magnetic

energy to kinetic energy is used in place of 
 (Shebalin 1989, 1994; Stribling & Matthaeus 1990).

4 Entropy

At this point we are in a position to de�ne the entropy of an absolute equilibrium ensemble and to develop

its properties. Consider now the expectation value of lnD; using (4), (5), and (9),

� = �hlnDi = �

Z
D lnD d�

= � hEi+ � hHki � lnC

= 3Z � lnC: (11)

Note that � is a function of � and � through (4). In turn, � and � are determined by (10); however, in

examining (10), it is clear that � and � cannot be determined unless hEi, hHki, and h
i are known. Prior

to performing a numerical simulation (Shebalin 1989, 1994), however, all that is known is that hEi and hHki

are constants, while h
i is unknown. In this case, set hEi = �E, hHki = �Hk, and h
i = 
; then �E and �Hk

can be taken as the initial values (which are known when the initial conditions are known), and the value of


 is variable, with �H2
k
< 
 � k2max �E.

Using the above assignments, the inverse temperatures � and �, as given in (10), become:

� =
3Z


�E
� �H2
k

and � =
�3Z �Hk

�E
� �H2
k

: (12)

Also, using (4) and (11), the dependence of � on these inverse temperatures takes the form:

� = �o �
3

2

X
k2KZ

ln
�
�2 � �2k2

�
where �o = 3Z (1 + ln�) + 3

X
k2KZ

ln k2: (13)

Putting (12) into (13), � is seen to be explicitly a function of only one variable parameter, 
: � = �(
).

Although we now have �(
), what is the advantage in this? In other words, why not solve the system of

equations (7) directly for � and �, place these into C as given by (4), and put this, in turn, into (11), giving

the entropy S = �? The advantage, as Khinchin (1949) points out, is that we can now demonstrate that

entropy never decreases when two previously isolated systems are brought together.
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The function � = 3Z � lnC de�ned in (11), and more explicitly in (13), is exactly analogous to (83) of

Khinchin (1949). It can be shown directly, or by referring to the more general results of Khinchin (1949, pp.

76-77), that �(
) has only one extremum �0(
) = d�=d
 = 0 at 
 = �
 and that �00(�
) > 0. Thus, 
 = �


is a point of global minimum for �(
); the entropy of the canonical system is S = �(�
). All of this allows a

direct proof that entropy increases when two isolated systems are brought together (Khinchin 1949).

Consider two sets of wave vectors K(1) and K(2) such that K(1) \K(2) = ; and K(1) [K(2) = K; also,

M =M (1) +M (2) and Z = Z(1) + Z(2). Looking at (3), (4), (5), and (8), it is clear that

E = E(1) + E(2); Hk = H
(1)
k

+H
(2)
k
; 
 = 
(1) + 
(2);

D = D(1)D(2); C = C(1)C(2); d� = d�(1)d�(2): (14)

Using these results, along with (11) gives us

�(1) + �(2) = 3
h
Z(1) + Z(2)

i
� ln

h
C(1)C(2)

i
= Z � lnC = � (15)

�.e., � is an additive function.

In terms of explicit arguments, we have

�(
) = �(1)(
(1)) + �(2)(
(2)): (16)

After the subsystems have been combined, a minimum for the function �(
) will occur at some value 
 = �
;

since we keep track of all the modes of the system, �
 can be uniquely written as a sum of two parts:

�
 = �
(1)+ �
(2), where �
(1) and �
(2) correspond to subsystems 1 and 2, respectively. Before the subsystems

were combined, however, they had individual minima at �

(1)
o and �


(2)
o ; therefore,

�(1)(�
(1)) � �(1)(�
(1)
o
) and �(2)(�
(2)) � �(2)(�
(2)

o
): (17)

From this it immediately follows that the total entropy after combination is greater than or equal to the

sum of the individual entropies S(1)
o and S(2)

o which existed before combination:

S = �(�
) = �(1)(�
(1)) + �(2)(�
(2))

� �(1)(�
(1)
o ) + �(2)(�
(2)

o ) = S(1)
o + S(2)

o : (18)

Thus, we have shown, for ideal 
uid turbulence, that the quantity that has been de�ned as the entropy

of an absolute equilibrium ensemble satis�es the necessary condition that the total entropy is always greater
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than or equal to the sum of the entropies of the two systems prior to their interaction: S � S
(1)
o +S

(2)
o . Note

that there is no `time evolution' occurring here: the instant two previously isolated systems are merged, the

entropy of the new combined system is established. The new system may then evolve from one microstate

to another `more probable' one; the new entropy, however, remains �xed in value.

5 Discussion

An analogous discussion of H(f) = �
R
f ln f dX can be given: H can take di�erent values, depending on the

instantaneous form of f ; however, only one particular value of f corresponds to an equilibrium, or average,

value. Let this value be denoted by �f : the entropy is S = H( �f). If the system is started o� at some less

probable distribution, denoted by fo, then H has the value H(fo), which is not the entropy, since an isolated

system (in a canonical sense) has only one value for its entropy, H( �f ).

Both � and H can be called `pre-entropies' as it is imprecise to call them `entropies.' The function H(f)

increases as f ! �f until it reaches a maximum of H( �f ): this is the entropy. The function �(
) decreases

as 
! �
 until it reaches a minimum of �(�
): this is also the entropy. Both H(f) and �(
) may 
uctuate

since the instantaneous form of f and the instantaneous value of 
 
uctuate. Neither of these, however, are

the entropy for an isolated system, which has a �xed, non-
uctuating value.

The function �(
) is useful, as Khinchin (1949) points out, and as was shown in (18), in that it can

be used to demonstrate the non-decreasing nature of entropy. It is also useful because the inverse of the

normalizing coe�cient C, as given in (4), is the so-called partition function of statistical mechanics (Landau

& Lifshitz 1980, p. 91), and thus, connects the statistical analysis of ideal 
uids to the main body of classical

statistical mechanics. Furthermore, if we use (11) to write S = � �E+� �Hk�lnC(�
), then we have @S=@ �E = �

and @S=@ �Hk = �, which generalizes the well-known thermodynamic result dS=dE = 1=T (Landau & Lifshitz

1980, p. 35) to the case of more than one temperature (here, T ! ��1; ��1).

Finally, a comment on the entropy function HG = 1
2

P
k
ln ju(k)j2 of Carnevale, Frisch & Salmon (1981)

and Carnevale (1982). On looking at (6), we see that ju(k)j2 = 3�=
�
�2 � �2k2

�
; then, from (13), HG �

2�=3 � Z ln�. Thus, the entropy function HG appears to have an additional term when compared with �,

and is therefore inconsistent with absolute equilibrium ensemble theory. However, � ! 0 in the limit of zero

kinetic helicity, and the essential di�erence between HG and � disappears.
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6 Conclusion

In this paper, we have developed the notion of entropy within the framework of the absolute equilibrium

ensemble theory of ideal 
uids. This has enabled a discussion of the distinction between the entropy S of an

isolated system and the quantities H and �: S is independent of time for an isolated system, while H is a

time-dependent measure of a system's evolution to a `most probable' state, and � allows for the analytical

demonstration of the law of increase of entropy when two isolated systems are combined. Recognizing the

distinction between H and � also obviates Loschmidt's paradox, which is discussed by Carnevale (1982).

Although much reference was given here to the work of Khinchin (1949), it should be noted that there are

more modern treatments of this subject (e.g., Sinai 1994). However, these modern works have a much more

abstruse character for non-mathematicians; this, along with the general completeness, for our purposes, of

the work of Khinchin (1949), has guided our choice of reference. The book by Khinchin (1949), translated

by Gamow, is well worth reading.
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